摩擦叠焊单元成形过程初始阶段的三维有限元数值模拟

摘 要:采用有限元数值模拟技术,对摩擦叠焊单元成形过程初始阶段的接触力学性质进行了分析研究。采用三维弹塑性静态接触有限元模型的分析表明,接触摩擦面上的法向应力从中心沿径向向外逐渐增大,当外载荷达到一定值后金属棒出现镦粗现象;金属棒-焊孔之间的径向间隙对接触力学性质的影响可以忽略。采用三维弹塑性热力耦合有限元模型时,接触摩擦面上的温度上升较为迅速,在达到热平衡后基本保持稳定,但整个过程中的最高温度低于材料的熔点。接触面上法向应力的分布则是中间高而边缘低,而且随时间逐渐减小。

关键词:摩擦液柱成形;摩擦叠焊;有限元;弹塑性静态接触;热力耦合分析

1 引言

摩擦叠焊是一种新型的材料固相连接成形技术,是英国焊接研究所(The Welding Institute, TWI)在固相连接技术领域的又一重大贡献,近五年来受到了欧美等国的高度关注。摩擦叠焊的基本单元成形过程是摩擦液柱成形(Friction Hydro Pillar Processing,FHPP),其成形机理如图1所示,首先在基体母材上预钻一个直径为Ф 9~17mm的孔,然后在孔中插入一根直径比孔径略小的旋转金属棒,同时在金属棒上施加轴向力并保持一定的进给速度,所产生的摩擦热使金属棒发生塑性变形,塑性金属材料向接触界面四周转移而填充棒材与焊孔之间的径向间隙,一系列FHPP填充焊孔的叠加组合便构成了摩擦叠焊的焊缝[1]。

 

图1 摩擦叠焊单元成形过程(FHPP)的机理示意图

显然,FHPP初始阶段的接触应力和塑性金属变形流动情况将直接影响填充成形质量。本文采用商业有限元软件MSC.Marc来模拟FHPP初始阶段金属棒与基体之间的接触情况,并分析相关参数对接触力学性质的影响。

2 FHPP三维弹塑性静态接触有限元分析

2.1 有限元模型构建及边界条件

采用金属棒-带孔基座的接触模型来进行数值模拟研究,基座为直径Φ 25mm、高30mm 的圆台,其平底内孔直径为Φ 14mm、孔深28mm,金属棒直径略小于内孔直径,其底端平面与圆台内孔平底相接触。图2 为三维有限元接触模型,采用编号为7 的8 节点六面体单元,接触单元最小边长为0.25mm 。三维有限元接触模型的边界条件为:在金属棒上端面施加不同的轴向应力,在基座底部固定X、Y、Z 方向的位移。

 

图2 FHPP三维有限元接触模型

2.2 接触面应力分析

在FHPP 初始阶段金属棒与基体的接触为简单单轴压缩应力状态,所以接触面法向应力是影响塑性变形的主要因素。图3 为接触面上法向应力分布曲线,从图中可以看出,在不同的轴向压力下,接触面法向应力分布曲线的形状都基本相似,总体上呈现中间向边缘逐渐增大的趋势,并随轴向压力的增大边缘处法向应力增大更为迅速。当轴向应力为150 N/mm2 时,金属棒边缘节点处的法向应力为245.12 N/mm2,刚刚超过Q235 钢的屈服强度,其余各节点仍处于弹性变形状态;当轴向应力为200 N/mm2 时,金属棒边缘节点处的法向应力迅速升高到350.38 N/mm2,距离边缘节点1mm 处节点的法向应力也达200.42 N/mm2,接近Q235 的屈服强度。而在这两个节点之间各处的法向应力都达到了材料的屈服极限,开始出现较为明显的塑性变形。当轴向应力达到300N/mm2 时,接触面上所有节点处的法向应力均超过了材料的屈服极限,整个金属棒发生塑性变形,在其中部开始膨胀,出现镦粗现象。跟踪轴向应力从小到大逐渐上升过程中等效塑性应变云图的变化情况,可以非常明显地观察出其变化历程。

 

图3 不同轴向应力下的法向应力分布曲线nextpage

3 FHPP三维弹塑性热力耦合接触分析

3.1 FHPP 摩擦热源分析

FHPP 是一个典型的热力耦合过程,摩擦界面处的温度场和变形场相互影响、交互作用。FHPP 通过金属棒与基座之间摩擦所产生的热量加热工件来完成材料填充成形,而热量则靠金属棒在摩擦过程中的动能提供。接触摩擦面上某一点处的热流密度q(r, t) 可以表示成如下形式[4]:

q(r, t) = 2πr μ(r, t) p(r, t) ω(t) η (1)

式中,p(r, t)是摩擦界面间的接触压力;μ(r, t)是摩擦系数;ω(t)是旋转角速度;η 是功热转化效率,或称功与热的转化系数。

在处理摩擦生热时,MSC.Marc 将两个接触摩擦表面相互作用生成的热流平均分配到两个接触体表面作为表面热流强度。计算所需添加的面热源时,首先利用点热源的计算方法得到不同焊接参数下的点热流密度,再将计算得到的点热流密度乘以点热流所对应的接触面面积,即可得到不同位置的面热流密度。

3.2 材料的热物性参数

Q235 的密度为7.8×103kg /m3,其热物性参数和力学性能参数的变化分别如图4 所示,实线部分通过材料手册以及相关文献获得,超出材料手册所提供温度范围的虚线部分通过外推的办法获得。考虑到在计算过程中其比热、导热系数、屈服强度及杨氏弹性模量会随温度的变化而变化,分别采用分段线性插值的方法求出[5]。

 

图4 低碳钢Q235热物性参数和力学性能参数的变化曲线

3.3 有限元接触模型的构建

接触摩擦副的基本尺寸参数与前面弹塑性静力学分析相同,金属棒的直径为Φ12mm、焊孔直径为Φ14mm;采用编号为7 的六面体8 节点单元,在接触部位采用局部加密处理;各单元节点初始温度为20℃。由于金属棒与基座之间的摩擦发生在缝隙很小的孔内,因此传热过程计算中可忽略热辐射和热对流的影响,主要考虑热传导方式。

3.4 计算结果及分析

使用Q235-Q235 材料组合,金属棒转速为5000rpm,其上施加的轴向应力为140N/mm2,对FHPP 初始阶段进行了数值模拟。图5为不同时刻下轴截面上焊接温度场的分布云图,从图中可以看出,接触摩擦面上的温度在初始阶段迅速上升,且沿着径向方向逐渐升高。在3.2s时,接触摩擦面上的温度上升至630℃左右,此时金属棒在轴向应力作用下主要发生弹性变形。到28.8s 时,焊孔温度上升到920℃,焊孔底部被塑性金属完全填充。

 

图5 不同时刻下的焊接温度场分布图

图5(a)中为金属棒接触摩擦表面沿径向以2mm 为间距选取的典型节点1、65、127以及中心节点189,图6 为这些节点在焊接过程中的温度的变化曲线, 从图中可以看出,由于金属棒顶端与焊孔底部迅速摩擦生热,温度在前10s 内上升很快;10s 之后,温度上升速率减缓,在25s 时到达最高温度,其中节点1 处的最高温度约为930℃左右,其他节点处的最高温度为900℃左右;随后温度开始下降,节点温度在890℃时,焊接模型达到热平衡,温度保持基本稳定。整个过程中的最高温度低于材料的熔点,同时各节点之间的温度值相差并不特别明显。

 

图6 径向节点温度分布在焊接过程中的变化曲线图nextpage

图7 为节点65、127、189 处的法向应力分布曲线。从图中可以看出,焊接初期的法向应力略有增加;随着时间的增加,法向应力值逐渐减小。到30s 时,节点189 处的法向应力已经从最高值260 N/mm2 降到了130 N/mm2 左右;而节点65 处法向应力值的变化范围并不大,仅从230N/mm2 下降到了200N/mm2 左右。

 

图7 节点65、127、189处的法向应力分布曲线

图8 为金属棒接触摩擦面在不同时刻的法向应力分布曲线。从图中可见,中间节点处的法向应力较高,而边缘节点处的法向应力较低;而且随着时间的延伸,法向应力逐渐减小。边缘节点1 处的法向应力值最后约为20N/mm2 左右;位于中心位置节点处的法向应力也略有减少,但相对于边缘节点而言变化并不大。越到边缘附近,法向应力的变化越明显。这是由于在填充成形过程中金属发生了塑性变形,金属棒边缘的塑性化金属向两边扩散的缘故。

 

图8 热力耦合情况下金属棒截面的法向应力曲线

图9 所示为不同轴向平均压力金属棒边缘节点1 处的塑性应变随时间变化图。在焊接开始阶段,由于温度并不高,因而产生的塑性应变较少。轴向平均压力越高,塑性应变的会越早增加。如图所示,轴向平均压力为200N/mm2 时,前12s 内的塑性应变比较小,增长也比较缓慢,15s 后塑性应变开始迅速增大,达到0.07 后,便基本稳定;当轴向平均压力增大到为260N/mm2 时,塑性应变在2s 之后就开始迅速增大。这是由于在轴向平均压力较大时,焊接过程升温较快,随着温度的升高,金属的屈服强度迅速降低;同时,较高的轴向应力可以在相对较低的温度下达到金属的屈服强度。当焊接进行到一定阶段之后,由于焊孔孔壁的限制,塑性应变值趋于稳定。

 

图9 节点1不同轴向平均压力下塑性应变随时间的变化

4 结论

(1) 采用三维弹塑性静态接触有限元模型时,接触摩擦面上的法向应力呈二次曲线,从中间向边缘逐渐增大,并随外载荷的增大而呈不同倍数的增加。当外载荷达到一定值后,接触面上所有节点处的法向应力均超过材料的屈服极限,金属棒出现镦粗现象。

(2) 采用外加面热源的三维弹塑性热力耦合有限元模型时,在给定的转速和温度下,接触摩擦面上的温度迅速上升,在达到热平衡后保持基本稳定。整个过程中的最高温度低于材料的熔点,同时各个节点之间的温度相差并非特别悬殊,这与固相连接成形技术的内在特征相吻合。

(3) 采用外加面热源的三维弹塑性热力耦合有限元模型时所得到的法向应力分布与采用三维弹塑性静态接触有限元模型完全不同,呈现中间高而边缘处较低的特征,而且随时间逐渐减小。

作者:西部车床,如若转载,请注明出处:https://www.lathe.cc/2023/11/3609.html