超精密车削切削力的试验研究
•
技术综合
1 引言
2 超精密车削试验条件
- 超精密机床
- 切削试验所用机床为哈尔滨工业大学自行研制的HCM-I型亚微米级超精密车床。机床工作台由直流伺服电机驱动,进给分辨率0.01µm;采用空气静压主轴(回转精度±0.1µm);导轨部件采用可抗温度干扰的花岗岩材料,空气导轨直线度误差0.13µm/100mm;采用空气弹簧作为减振、隔振系统;机床固有频率:水平方向≤1.12Hz,垂直方向≤2Hz。
表1 LY12的化学组分(%)组成元素 Cu Mn Mg Al GB 3190标准值 3.80-4.90 0.30-0.90 1.20-1.80 – 测试值 4.5 0.51 1.42 -表2 LY12的物理性能弹性模量E(×10
3MPa) 74.2 切变模量G(×103MPa) 27.3 剪切强度t(MPa) 252 HBS硬度(GPa) 1.40 强化系数n 0.32 - 切削试验所用机床为哈尔滨工业大学自行研制的HCM-I型亚微米级超精密车床。机床工作台由直流伺服电机驱动,进给分辨率0.01µm;采用空气静压主轴(回转精度±0.1µm);导轨部件采用可抗温度干扰的花岗岩材料,空气导轨直线度误差0.13µm/100mm;采用空气弹簧作为减振、隔振系统;机床固有频率:水平方向≤1.12Hz,垂直方向≤2Hz。
- 工件材料
- 切削试件材料为铝合金LY12,其化学成分及物理性能指标分别见表1和表2。
- 金刚石刀具
- 天然单晶金刚石具有极高的硬度、耐磨性和弹性模量,制成的刀具工作寿命长,尺寸耐用度高,切削刃极为锋利,可实现超薄切削,切削刃形可复映在已加工表面上,加工出超光滑表面;金刚石刀具与工件材料间抗粘结性好、摩擦系数低、加工表面完整性好。本切削试验所用刀具为英国Co
ntour Fine Tooling&11>3/0 公司生产的圆弧刃金刚石车刀,刀具前角g
0=0°,后角a0=7°,刀尖圆弧半径re=1.5mm,切削刃钝圆半径rn≈190mm。 - 天然单晶金刚石具有极高的硬度、耐磨性和弹性模量,制成的刀具工作寿命长,尺寸耐用度高,切削刃极为锋利,可实现超薄切削,切削刃形可复映在已加工表面上,加工出超光滑表面;金刚石刀具与工件材料间抗粘结性好、摩擦系数低、加工表面完整性好。本切削试验所用刀具为英国Co
- 切削力测量系统
图1 切削力测量系统示意图- 为获得超光滑加工表面,除了采用超精密加工机床、金刚石刀具以及对加工环境进行严格控制外,还需利用测量仪器对加工过程进行实时监控、分析与优化。超精密车削选用的进给量和背吃刀量通常比普通车削小三个数量级,因此加工中产生的切削力也非常小(一般不超过1N),为此,需要采用高精度、高灵敏度、高可靠性的切削力测量系统。本切削试验采用的切削力测量系统如图1所示。该测量系统由安装在机床刀架上的Kistler 9256A1型高灵敏度压电式三向测力仪、5019B型多通道电荷放大器、DynoWare System数据采集系统软件、5261型A/D转换卡、主机及显示系统等组成,附带的驱动软件可通过RS-232C接口对电荷放大器进行遥控,利用系统的多种图形显示功能可方便地对测量数据进行分析和研究。
图2 进给量f与切削力F
c、Ft的对应关系曲线 - 为获得超光滑加工表面,除了采用超精密加工机床、金刚石刀具以及对加工环境进行严格控制外,还需利用测量仪器对加工过程进行实时监控、分析与优化。超精密车削选用的进给量和背吃刀量通常比普通车削小三个数量级,因此加工中产生的切削力也非常小(一般不超过1N),为此,需要采用高精度、高灵敏度、高可靠性的切削力测量系统。本切削试验采用的切削力测量系统如图1所示。该测量系统由安装在机床刀架上的Kistler 9256A1型高灵敏度压电式三向测力仪、5019B型多通道电荷放大器、DynoWare System数据采集系统软件、5261型A/D转换卡、主机及显示系统等组成,附带的驱动软件可通过RS-232C接口对电荷放大器进行遥控,利用系统的多种图形显示功能可方便地对测量数据进行分析和研究。
3 进给量对切削力的影响
p=10µm时进给量f与主切削力Fc、吃刀抗力Ft的对应关系曲线如图2所示。
c和Ft随着进给量的增大而增大。当进给量f大于一定值时,Fc和Ft的变化趋势与普通切削相同,即始终保持Fc>Ft;当进给量f小于一定值时,Fc和Ft则具有特殊变化规律,即出现Fc>Ft的现象。
p=10µm,进给量分别为f=5µm/r、f=12µm/r时,测力仪实际测得的切削力曲线分别如图3a、3b所示。
(a)f=5µm/r
(b)f=12µm/r 图3 切削力测量曲线
图4 吃刀量ap与切削力Fc、Ft的对应关系曲线
4 背吃刀量对切削力的影响
p与主切削力Fc、吃刀抗力Ft的对应关系曲线如图4所示。
p小于一定值时,也会出现Ft>Fc的现象;当背吃刀量ap大于一定值时,则始终保持Fc>Ft。随着背吃刀量的增大,Fc、Ft值逐渐增大,且Fc的增幅大于Ft的增幅。
5 分析与讨论
t>Fc现象的主要原因分析如下:作用于前刀面上的切削力主要与进给量f和背吃刀量ap有关,而作用于切削刃刃口和后刀面上的切削力除与f和ap有关外,还与切削刃钝圆半径rn有关。当选用的进给量和背吃刀量与切削刃钝圆半径相比较大时,作用于切削刃刃口和后刀面上的正压力比作用于前刀面上的正压力小很多,刀—工接触区以弹性变形为主,塑性变形较小。由于刀具与工件只在刀尖附近很小区域内接触,其接触面积远小于刀—屑接触面积,因此刀—工之间的摩擦力也远小于刀—屑之间的摩擦力,此时容易出现Fc>Ft的现象。但当选用的进给量和背吃刀量与切削刃钝圆半径之比小到一定程度时,切削力的变化规律将发生变化。随着进给量和背吃刀量的逐渐减小,与刀—屑接触面积相比,刀—工接触面积逐渐增大,刀—工接触区以塑性变形为主,刀具与工件之间的挤压和摩擦在切屑形成过程中起着关键作用。此时,作用于切削刃刃口和后刀面上的切削力在总切削力中所占比例较大,而作用于前刀面上的切削力在总切削力中所占比例相对较小,因此就会出现Ft>Fc的现象。由于Ft的这种特殊变化将对已加工表面粗糙度产生直接影响,因此在超精密微薄切削时,应视具体情况合理选择进给量范围,以保证加工获得的表面粗糙度值较小。
6 结论
t的特殊变化将对加工表面粗糙度产生直接影响的观点。在超精密切削时,并非选用进给量越小则获得的加工表面粗糙度值越小,因此应考虑切削力变化的影响,在合理范围内选取进给量,以保证超精密加工的表面质量。
作者:西部车床,如若转载,请注明出处:https://www.lathe.cc/2023/11/8063.html